

Issue date: 06/06 Supersedes: 11/05

Single Mode Optical Fibre (SMF)

Product Type: G.652.B

Coating Type: ColorLock™ and Natural

Draka Comteq Single Mode Fibre (SMF) provides optimum performance in both the 1310 nm and 1550 nm wavelength operating ranges (including the 1565-1625 nm L-band), with a low dispersion in the 1310 nm window. It can be used in all cable constructions, including loose tube, tight buffered, ribbon, and central tube designs. It supports long haul, metropolitan, access and premises applications in telecommunications, CATV, utility and intelligent traffic networks.

Draka Comteq fibres are further enhanced with the proprietary Colorlock™ coating process. This process enables optimum fibre performance, reliability and durability, even in the harshest environments. Draka Comteq's Advanced Plasma and Vapor Deposition (APVD™) manufacturing process ensures the highest quality and purity of fibres.

The fibre complies with or exceeds the ITU-T Recommendation G.652.B, the IEC Int. Standard 60793-2-50 type B.1.1 Optical Fibre Specification and Telcordia GR-20-CORE, ANSI/ICEA S-87-640 and RUS 7CFR 1755.900.

Features	Benefits
Low attenuation and dispersion; highly efficient	Support all applications
for O-band(1260-1360 nm), C- and L-band	
(1530-1625 nm)	
• Fully compatible with other fibres in terms of	 Open standards for multi-sourcing worldwide
transmission, connections and installation tools	
• Easy to strip, using both mechanical and	 Easier, faster and more secure connections
heat-stripping techniques	
 Proprietary APVD™ manufacturing process 	 Superior geometry, uniformity and purity
 Revolutionary ColorLock™ coating process 	 Increased reliability, durability, and superior aging
	performance, resulting in lower maintenance and
	replacement costs
	 Makes color a component of the coating, thus
	enhancing fibre identification and colored fibre
	reliability
	 Consistent, vibrant color for easy-of-use and
	flexibility

Draka Comteq | Optical Fibre

Netherlands: France: USA:

Tel: +31 (0)40 29 58 700 Tel: +33 (0)3 21 79 49 00 Tel: +1 800 869 3355 Fax: +31 (0)40 29 58 710 Fax: +33 (0)3 21 79 49 33 Fax: +1 828 459 8444

Issue date: 06/06 Draka Comteq | Optical Fibre Supersedes: 11/05

Single Mode Optical Fibre (SMF)

Product Type: G.652.B

Coating Type: ColorLock™ and Natural

Optical Specifications (Uncabled fibre)

Attenuation	Max. Value (dB/km)
Attenuation at 1310 nm	0.33 - 0.35
Attenuation at 1383 nm	1
Attenuation at 1550 nm	0.19 - 0.22
Attenuation at 1625 nm	0.21 - 0.24
Other values available on request	

Attenuation vs. Wavelength

Maximum attenuation change over the window from reference

Wavelength range (nm)	Reference λ (nm)	Difference (dB/km)
1285 - 1330	1310	≤ 0.03
1525 - 1575	1550	≤ 0.02
1550 - 1625	1550	≤ 0.04

Point discontinuities

No point discontinuity greater than 0.05 dB at 1310 nm or 1550 nm.

Attenuation with Bending

Number of Turns	Mandrel Diameter (mm)	Wavelength (nm)	Induced Attenuation (dB)
100	50	1310	≤ 0.05
100	50	1550	≤ 0.05
100	60	1625	≤ 0.05

Cutoff Wavelength

Cable Cutoff wavelength (λ_{CCf}) ≤ 1260 nm

Mode Field Diameter

Wavelength (nm)	MFD (μm)
1310	9.2 ± 0.4
1550	10.3 ± 0.5
	1310

Chromatic Dispersion

Cincinatio Dioporcion	
Wavelength (nm)	Chromatic Dispersion (ps/[nm.km])
1285 – 1330	≤ 3
1550	≤ 18.0
1625	≤ 22.0
Zero Dispersion Wavelength (λ ₀):	1300-1322 nm
Slope (S ₀) at λ_0 :	$\leq 0.090 \text{ ps/[nm}^2.\text{km]}$

Polarization Mode Dispersion (PMD)

	(60 (((()))
PMD Link Design Value*	≤ 0.1
Max. Individual Fibre	≤ 0.20
* According to JEC 60794 -3 Ed 3 (0=0.01%)	

Geometrical Specifications

Glass Geometry	
Cladding Diameter	125.0 ± 1.0 µm
Core/Cladding Concentricity	≤ 0.6 µm
Cladding Non-Circularity	≤ 1.0 %
Fibre Curl (radius)	≥ 4 m

Coating Geometry

Coating Diameter	$242 \pm 7 \mu m$
Coating / Cladding Concentricity	≤ 12 µm
Coating Non-Circularity	≤ 5 %

Lengths Standards lengths up to 50.4 km

Mechanical Specifications

Proof test

The entire length is subjected to a tensile proof stress > 0.7 GPa (100 kpsi); 1% strain equivalent.

Tensile Strenath

Dynamic tensile strength (0.5 meter gauge length): Aged** and unaged median > 3.8 GPa (550 kpsi)

** Aging at 85°C, 85% RH, 30 days

Dynamic and Static Fatigue

Dynamic fatigue, unaged and aged** n_d > 20 n_s > 23 Static fatigue, aged**

Coating Performance

Coating strip force unaged and aged***:

- Average strip force: 1 N to 3 N
- Peak strip force: 1.3 N to 8.9 N (0.2 lbf to 2.0 lbf)
- *** Aging:
 - 0°C and 45°C
 - 30 days at 85°C and 85% RH
 - 14 days water immersion at 23°C
 - Wasp spray exposure (Telcordia)

Environmental Specifications

Livironniental Specifications		
Environmental Test	Test Conditions	Induced Attenuation at 1310, 1550 nm (dB/km)
Temperature cycling	−60°C to 85°C	≤ 0.05
Temperature- Humidity cycling	-10°C to 85°C, 4-98%	RH ≤ 0.05
Water Immersion	14 days; 23°C	≤ 0.05
Dry Heat	30 days; 85°C	≤ 0.05
Damp Heat	30 days; 85°C; 85% F	RH ≤ 0.05

Typical Characterisation Values

Nominal Zero Dispersion Slope	$0.085 \text{ ps/(nm}^2.\text{km)}$
Effective group index @ 1310 nm	1.467
Effective group index @ 1550 nm	1.468
Effective group index @ 1625 nm	1.468

Rayleigh Backscatter Coefficient for 1 ns pulse width:

@ 1310 nm -79.4 dB @ 1550 nm -81.7 dB @ 1625 nm -82.5 dB

Median Dynamic Tensile Strength 750 kpsi / 5.3 GPa (Aged at 85°C, 85% RH, 30 days; 0,5 m gauge length)

(ns√km)